Scientists have many tools at their disposal for looking at preserved tissue under a microscope in incredible detail, or peering into the living body at lower resolution.
What they haven’t had is a way to do both: create a three-dimensional, real-time image of individual cells or even molecules in a living animal—until now.
New research provides the first glimpse under the skin of a living animal, showing intricate real-time details in three dimensions of the lymph and blood vessels.
The technique, called MOZART (for molecular imaging and characterization of tissue noninvasively at cellular resolution), could one day allow scientists to detect tumors in the skin, colon, or esophagus, or even to see the abnormal blood vessels that appear in the earliest stages of macular degeneration—a leading cause of blindness.
“We’ve been trying to look into the living body and see information at the level of the single cell,” says Adam de la Zerda, assistant professor of structural biology at Stanford University and senior author of the paper that is published in Scientific Reports. “Until now there has been no way do that.”
The technique could allow doctors to monitor how an otherwise invisible tumor under the skin is responding to treatment, or to understand how individual cells break free from a tumor and travel to distant sites.
A technique called optical coherence tomography, or OCT, does exists for peeking into a live tissue several millimeters under the skin, revealing a landscape of cells, tissues and vessels. But it isn’t sensitive or specific enough to see individual cells or the molecules that the cells are producing.
A major issue has been finding a way of differentiating between cells or tissues. For example, picking out the cancerous cells beginning to multiply within an overall healthy tissue. In other forms of microscopy, scientists have created tags that latch onto molecules or structures of interest to illuminate those structures and provide a detailed view of where they are in the cell or body.
[Continue reading to learn what “nanorods” are and how they solved these imaging issues…]
[nextpagelink][/nextpagelink]