Breakthrough Device Rotates a Single Cell to Create 3D Images using a Smartphone

A new low-cost device will allow researchers to take 3D images of single cells or organisms using only a smartphone, replacing the need for an existing device that costs more than $200,000.

The device uses acoustic waves to vibrate trapped bubbles in a series of small cavities. The vibration creates microvortexes in the flowing liquid that are tunable so the sample rotates in any direction and at any desired speed.

“Currently confocal microscopes are required in many biological, biochemical, and biomedical studies, but many labs do not have access to a confocal microscope, which costs more than $200,000,” says Tony Jun Huang, a professor of engineering science and mechanics and chair in bioengineering sciences at Penn State.

Huang and his group created the device called acoustofluidic rotational manipulation (ARM).

“Our ARM method is a very inexpensive platform and it is compatible with all the optical characterization tools. You can literally use a cellphone to do three-dimensional imaging.”

To demonstrate the device’s capabilities, the researchers rotated C. elegans, a model organism about a millimeter in length frequently used in biological studies. They also acoustically rotated and imaged a HeLa cancer cell.

(a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar = 100 μm. (Credit: Tony Jun Huang/Penn State)
(a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar = 100 μm. (Credit: Tony Jun Huang/Penn State) Click/tap for larger image.

Existing methods of manipulating small objects depend on the optical, magnetic, or electrical properties of the specimen, and/or damage the specimen due to laser heating. The ARM method, on the other hand, uses a gentle acoustic wave generated by a power similar to ultrasound imaging, and at a lower frequency. The device is also compact and simple to use.

“Our method is a valuable platform for imaging and studying the effect of rotation at the single cell level,” says Adem Ozceki, graduate student in engineering science and mechanics and one of the lead authors of the study published in Nature Communications. “More important, with the capacity to rotate large numbers of cells in parallel, researchers will be able to perform high-throughput, single-cell studies.”

The National Institutes of Health, National Science Foundation, and the Center for Nanoscale Science at Penn State supported the work.

Source: Republished from Futurity.org as a derivative work under the the Attribution 4.0 International license.  Original article posted to Futurity by .

Now, Check Out: