A simple filtration process helped researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes.
Scientists at Rice University have made inch-wide films of densely packed, chirality-enriched single-walled carbon nanotubes through a process revealed in Nature Nanotechnology.
In the right solution of nanotubes and under the right conditions, the tubes assemble themselves by the millions into long rows that are aligned better than once thought possible, the researchers report.
NANOTUBES LIKE PICKUP STICKS
The lab discovered the filtration technique in late 2013 when graduate students and lead authors Xiaowei He and Weilu Gao inadvertently added a bit too much water to a nanotube-surfactant suspension before feeding it through a filter assisted by vacuum. (Surfactants keep nanotubes in a solution from clumping.)
The film that formed on the paper filter bore further investigation. “Weilu checked the film with a scanning electron microscope and saw something strange,” He says. Rather than drop randomly onto the paper like pickup sticks, the nanotubes—millions of them—had come together in tight, aligned rows.

Click/tap for larger image.
“That first picture gave us a clue we might have something totally different,” He says. A year and more than 100 films later, the students and their colleagues had refined their technique to make nanotube wafers up to an inch wide (limited only by the size of their equipment) and of any thickness, from a few to hundreds of nanometers.
Further experiments revealed that each element mattered: the type of filter paper, the vacuum pressure, and the concentration of nanotubes and surfactant. Nanotubes of any chirality and diameter worked, but each required adjustments to the other elements to optimize the alignment.
The films can be separated from the paper and washed and dried for use, the researchers say.
They suspect multiwalled carbon nanotubes and non-carbon nanotubes like boron nitride would work as well.

HOW DO THE TUBES LINE UP?
Coauthor Wade Adams, a senior faculty fellow at Rice who specializes in polymer science, says the discovery is a step forward in a long quest for aligned structures.
“They formed what is called a monodomain in liquid crystal technology, in which all the rigid molecules line up in the same direction,” says Adams, senior faculty fellow in materials science and nanoengineering.
“It’s astonishing. (The late Rice Nobel laureate) Rick Smalley and I worked very hard for years to make a single crystal of nanotubes, but these students have actually done it in a way neither of us ever imagined.”
Why do the nanotubes line up? Kono says the team is still investigating the mechanics of nucleation—that is, how the first few nanotubes on the paper come together.
“We think the nanotubes fall randomly at first, but they can still slide around on the paper,” he says. “Van der Waals force brings them together, and they naturally seek their lowest-energy state, which is in alignment.” Because the nanotubes vary in length, the researchers suspect the overhangs force other tubes to line up as they join the array.
The researchers found their completed films could be patterned with standard lithography techniques. That’s yet another plus for manufacturers, says Kono, professor of electrical and computer engineering, of physics and astronomy, and of materials science and nanoengineering.
“I gave an invited talk about our work at a carbon nanotube conference, and many people are already trying to reproduce our results,” he says. “I got so much enthusiastic response right after my talk. Everybody asked for the recipe.”
Coauthors are from Rice, Zhejiang University, and Los Alamos National Laboratory. The Department of Energy and the Robert A. Welch Foundation supported the research which is published in Nature Nanotechnology.
Source: Republished from Futurity.org as a derivative work under the Attribution 4.0 International license. Original article posted to Futurity by Mike Williams-Rice.